Time-resolved fluctuation during the photochemical reaction of a photoreceptor protein: phototropin1LOV2-linker.

نویسندگان

  • Kunisato Kuroi
  • Francielle Sato
  • Yusuke Nakasone
  • Kazunori Zikihara
  • Satoru Tokutomi
  • Masahide Terazima
چکیده

Although the relationship between structural fluctuations and reactions is important for elucidating reaction mechanisms, experimental data describing such fluctuations of reaction intermediates are sparse. In order to investigate structural fluctuations during a protein reaction, the compressibilities of intermediate species after photoexcitation of a phot1LOV2-linker, which is a typical LOV domain protein with the C-terminal linker including the J-α helix and used recently for optogenetics, were measured in the time-domain by the transient grating and transient lens methods with a high pressure optical cell. The yield of covalent bond formation between the chromophore and a Cys residue (S state formation) relative to that at 0.1 MPa decreased very slightly with increasing pressure. The fraction of the reactive species that yields the T state (linker-unfolded state) decreased almost proportionally with pressure (0.1-200 MPa) to about 65%. Interestingly, the volume change associated with the reaction was much more pressure sensitive. By combining these data, the compressibility changes for the short lived intermediate (S state) and the final product (T state) formation were determined. The compressibility of the S state was found to increase compared with the dark (D) state, and the compressibility decreased during the transition from the S state to the T state. The compressibility change is discussed in terms of cavities inside the protein. By comparing the crystal structures of the phot1LOV2-linker at dark and light states, we concluded that the cavity volumes between the LOV domain and the linker domain increase in the S state, which explains the enhanced compressibility.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time-resolved methods in Biophysics. 1. A novel pump and probe surface-enhanced resonance Raman approach for studying biological photoreceptors.

This article describes a method, based on surface-enhanced resonance Raman (SERR) spectroscopy, for studying the reaction dynamics of photoreceptors immobilized on metal electrodes. Time resolution and fresh sample conditions are achieved by synchronizing the rotational and translational motion of a novel kinematic electrode with the duration and time delay between the pump and probe events. Th...

متن کامل

Photochemical degradation of azure-b with sulphate radical ion generated by peroxydisulphate ion with cupric ion

In this paper, the photochemical degradation of azure-b by Cu2+/S2O82− process has beenpresented. Cu2+ as photocatalyst and S2O82− ion as photooxidant used in this process. Atextremely low concentrations, cupric ion showed true catalytic activity in the overall process.The influence of various parameters on the performance of the treatment process has beenconsidered, such as pH, concentration o...

متن کامل

Protein-phospholipid-cholesterol interaction in the photolysis of invertebrate rhodopsin.

Three aspects of protein-phospholipid-cholesterol interaction in microvillar membranes of octopus photoreceptor cells were studied: (1) the effect of hydrophobic environment on the kinetics of thermal transformation in the photolysis of rhodopsin; (2) effects of cholesterol in microvillar membranes on protein-lipid interaction; (3) the effect of membrane proteins on the dynamic properties of li...

متن کامل

Time-resolved methods in biophysics. 10. Time-resolved FT-IR difference spectroscopy and the application to membrane proteins.

The introduction of time-resolved Fourier transform infrared (FT-IR) spectroscopy to biochemistry opened the possibility of monitoring the catalytic mechanism of proteins along their reaction pathways. The infrared approach is very fruitful, particularly in the application to membrane proteins where NMR and X-ray crystallography are challenged by the size and protein hydrophobicity, as well as ...

متن کامل

Photochemical reaction dynamics of the primary event of vision studied by means of a hybrid molecular simulation.

The photoisomerization reaction dynamics of a retinal chromophore in the visual receptor rhodopsin was investigated by means of hybrid quantum mechanical/molecular mechanical (QM/MM) molecular dynamics (MD) simulations. The photoisomerization reaction of retinal constitutes the primary step of vision and is known as one of the fastest reactions in nature. To elucidate the molecular mechanism of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 18 8  شماره 

صفحات  -

تاریخ انتشار 2016